Abstract

Tomato (Solanum lycopersicum L.) is a climacteric fruit, i.e., during ripening an increase in ethylene synthesis and high rate of respiration are observed. Low oxygen levels might inhibit or block ethylene biosynthesis and therefore retard the ripening process. Despite commercial applications of low oxygen treatments, the precise mode of action of low oxygen in fruit tissues and ripening is not well understood. In order to delineate the molecular responses to low oxygen stress in fruits, hypoxia-responsive tomato genes encoding heat shock factors, heat shock proteins, and enzymes involved in fermentation and ethylene synthesis pathways were analyzed. In this study, tomato fruit stored under hypoxia conditions showed that HSP17.7 and HSP21 genes were highly induced by low oxygen level, indicating their primary role in maintaining cellular homeostasis after this stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call