Abstract
Hypoxia is an important cause of chemotherapy resistance in gastric cancer. However, little is known about the growth of gastric cancer under purely hypoxia conditions. This study aims to study the effect of hypoxia on the growth patterns of gastric cancer cells and explore the response of gastric cancer cells to the chemotherapeutic drug 5-fluorouracil (5-FU) in a hypoxic environment. Gastric cancer cells MKN45 were cultured under 1% oxygen hypoxia and conventional air conditions. An intervention group with the addition of the chemotherapeutic drug 5-FU was also established. The proliferation and apoptosis of gastric cancer cells under different oxygen conditions and intervention groups were detected using the cell counting kit-8 (CCK-8) method, JC-1 mitochondrial membrane potential assay, and Annexin-V/PI double staining method. Cell cycle changes were detected by flow cytometry, and mitochondrial changes were detected using electron microscopy. In the absence of 5-FU intervention, compared with the normoxia group, the hypoxia group showed higher rates of early and late apoptosis and higher cell death rates as indicated by the JC-1 mitochondrial membrane potential assay, Annexin-V/PI double staining, and CCK-8 results. Flow cytometry results showed that the cell cycle was arrested in the G0/G1 phase without progression. Electron microscopy revealed more severe mitochondrial destruction. However, with 5-FU intervention, the hypoxia group showed lower apoptosis rates, more cell cycle progression, and less mitochondrial destruction compared with the normoxia group. Hypoxic environments promote apoptosis and even death in gastric cancer cells, but hypoxia counteracts the efficacy of the chemotherapeutic drug 5-FU, which may contribute to 5-FU chemotherapy resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.