Abstract

Blunt snout bream plays an important role in freshwater aquaculture in China, but the development of its culture industry has been restricted by increasing hypoxia problem. Through the breeding of wild blunt snout bream populations (F0), a hypoxia-tolerant new variety (F6) was obtained. In this study, the new variety was stressed under low oxygen concentration (2.0mg·L-1) for 4 and 7days, the morphological structure of the gill tissue showed a striking change, the interlamellar cell mass (ILCM) volume reduced significantly (P < 0.05), and the lamellar respiratory surface area enlarged significantly (P < 0.05), compared to normoxic controls. After 7days of oxygen recovery, gill remodeling was completely reversed. Additionally, the TUNEL-positive apoptotic fluorescence signals increased in the gills exposed to hypoxia up to 4 and 7days; the apoptosis rate also increased significantly (P < 0.05). Under 4 and 7days of hypoxia stress, the expression of anti-apoptotic gene Bcl-2 in the gills downregulated significantly (P < 0.05), with the significantly (P < 0.05) upregulated expression of pro-apoptotic gene Bad. Furthermore, under hypoxia stress, the activity or content of oxidative stress-related enzymes (superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and glutathione (GSH)) in gill tissue increased to varying degrees compared to normoxic controls. These results offer a new perspective into the cellular and molecular mechanism of hypoxia-induced gill remodeling in blunt snout bream and a theoretical basis for its hypoxia adaptation mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call