Abstract

Concentrations of ferritin in alveolar cells and on the alveolar surface are increased in patients with a variety of respiratory disorders. Ferritin synthesis by cells is modulated by iron content but is also influenced by stimuli other than iron. In this study we sought to determine whether in vitro exposure to hypoxia- or nitric oxide (NO)–induced ferritin accumulation or release by human alveolar macrophages (AMs) or a lung cancer–derived epithelial cell line (A549). Changes in cell content of iron and ferritin (L- and H-types), as well as ferritin content of cell supernatants, were determined after in vitro exposure to hypoxia (1% or 10% O 2, 18 hours) or the NO donor S-nitroso- N-acetylpenicillamine (SNAP, 0.01–1.0 mmol/L, 18 hours). Exposure to 1% O 2 increased ferritin content in both cell types (>fourfold increase; P < .005) without changing iron content. Treatment with SNAP increased ferritin content of A549 cells in a dose-dependent manner, whereas treatment of AMs decreased cellular iron and ferritin content and increased supernate ferritin content. Pretreatment of cells with N-acetylcysteine (500 μmol/L) reduced hypoxia-induced ferritin accumulation in alveolar cells and completely inhibited NO-induced ferritin accumulation in A549 cells. These findings indicate that exposure to 1% O 2can increase ferritin content in alveolar cells, whereas NO can increase ferritin content (A549 cells) or decrease ferritin content (AMs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.