Abstract

When cooled in normoxia newborn rats decreased body temperature (Tb), increased metabolic rate and weakened the intensity of the vagally mediated Hering-Breuer inspiratory inhibition reflex (HB reflex) [1]. On the other hand cooling in hypoxia decreased both Tb and metabolic rate and had no effect on HB reflex intensity [2]. This suggested that in newborn rats the effect of cooling on the strength of the HB reflex was not attributable to Tb per se but to the corresponding changes in metabolic rate [2]. Nevertheless, in normoxia the drop in Tb with cooling, via the Q10 effect, could oppose the changes in metabolic rate induced by thermogenesis, and the hypoxia per se could be expected to provide a 'drive' through its effect on the peripheral chemoreceptors. To clarify the effects of hypothermia and hypoxia on the HB reflex in the absence of thermogenesis we examined the ectothermic neonatal tammar wallaby (Macropus eugenii). As newborn marsupials breathe with a pronounced end-inspiratory pause [3,4], the result of vagally controlled laryngeal closure [3], the effect of cooling and hypoxia on the end-inspiratory pause was also examined. Neonates (aged 2–3 weeks, mass ~2.5 g) were studied at Tb of 36.5 (normothermia), 32, 28 and 20°C in normoxia or hypoxia (10% O2). The rate of oxygen consumption (VO2), breathing pattern and ventilation (??E) were measured as previously described [4]. Applying a vacuum across the body until the first inspiratory effort induced the HB reflex, quantified as the inhibitory ratio (IR) of the expiratory time during lung inflation compared to the expiratory time during spontaneous breathing (TE). At 36.5°C in normoxia the tammar neonate exhibited a marked IR to maintained lung inflations at -5 and -10 cm H2O. Acute hypoxia invoked a hyperpnea (+42%) and hypometabolism (-30%) and reduced the IR by ~50% at -10 cm H2O and abolished it at -5 cm H2O. This is in agreement with the effects of hypoxia on hyperventilation and the HB reflex in 8-day-old rat pups [5] which possess a greater chemosensitivity than newborn rats. In normoxia decreased Tb was associated with a decrease in VO2 yet ??E/VO2 remainedunchanged (~32) to that at 36.5°C; the decrease in ??E was contributed to by an increase in TE, primarily the end-inspiratory pause. Associated with the increase in expiratory time was a failure to elicit a HB reflex at either -5 or -10 cm H2O. At lower temperatures exposure to hypoxia maintained the hyperventilation (??E/VO2 ~62) seen at 36.5°C, though at these temperatures this was achieved solely through a hypometabolic response. Whether the lack of hyperpneic response was affected by the affect of hypothermia on chemo-afferents [6] is unknown but maintenance of ??E/VO2 during hypothermia in the 2–3 week old tammar wallaby suggests that, relative to metabolic rate, respiratory gain, which is centrally controlled, is not depressed. Additionally, hypothermia prolongs the end-inspiratory pause presumably through temperature effects on neural function [7] and that these appear to predominate the vagally mediated HB reflex.

Highlights

  • To be effective, inspiratory muscles on the left and right sides must contract together

  • We have found that a prominent gap in the column of ventral respiratory group (VRG) The nucleus tractus solitarii (NTS) relays information from primary related parvalbumin cells [2] likely corresponds to the pBc since visceral receptors to the central nervous system and is critically parvalbumin cells are rare in this zone and never co-localize with involved in the reflex control of autonomic functions

  • The specific protein(s) necessary for longterm facilitation (LTF) is unknown, we recently found that episodic hypoxia and LTF are associated with elevations in ventral spinal concentrations of brain derived neurotrophic factor (BDNF)

Read more

Summary

Introduction

Inspiratory muscles on the left and right sides must contract together. The left and right halves of the diaphragm are synchronised because a bilateral population of medullary premotor neurones [1] simultaneously excites left and right phrenic motoneurones. Transection studies demonstrate that each side of the brainstem is capable of generating respiratory rhythm independently [2], so that left and right medullary inspiratory neurones must themselves be synchronised. The interconnections and common excitation that accomplish such synchronisation are unknown in rats. The respiratory rhythm of hypoglossal (XII) nerve discharge in transverse medullary slice preparations from neonatal rats is thought to originate in the region of the ventral respiratory group (VRG); generated there by a combination of “pacemaker” neurones [1] and their interactions with other respiratory neurones. Our goal was to discover interconnections between left and right VRG neurones as well as their connections to XII motoneurones

Objectives
Methods
Results

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.