Abstract

Blood oxygen is an important modulator of arterial function, but its impact on peripheral venous function is incompletely understood. Herein, we sought to determine the effect of hypoxia and hyperoxia on venous capacity and compliance in the lower limb. In 16 healthy individuals (7 women; age: 28.3 ± 7.6 yr, mean ± SD), we assessed peripheral oxygen saturation ([Formula: see text]), the cross-sectional area (CSA) of the great saphenous vein (GSV; Doppler ultrasound), and calf volume (strain-gauge plethysmography) during a standard 60 mmHg thigh cuff inflation-deflation protocol. Separate trials were undertaken during breathing of room air, hypoxia [fraction in inspired oxygen ([Formula: see text]): 0.10], and hyperoxia ([Formula: see text]: 0.50), according to a single-blinded, randomized design. Lower limb pressure-CSA and pressure-volume relationships were modeled using a quadratic regression equation and compliance derived. [Formula: see text] was decreased by hypoxia (83.6 ± 5.6%) and increased by hyperoxia (98.7 ± 0.5%) compared with room air (96.4 ± 1.0%, P < 0.001). Compared with room air (17.0 ± 7.9 mm2), hypoxia decreased GSV CSA (13.4 ± 5.7 mm2, P < 0.001), whereas no change was observed with hyperoxia (17.1 ± 8.7 mm2, P = 0.883). GSV compliance derived from the pressure-CSA relationships was elevated approximately twofold with hyperoxia (-0.0061 ± 0.0046 a.u.) when compared with room air (-0.0029 ± 0.002 a.u., P = 0.027) and hypoxia (-0.0030 ± 0.0032 a.u., P = 0.007). No differences were observed in calf pressure-volume parameters with either hypoxia or hyperoxia (P > 0.05). Our data indicate that GSV capacity is reduced by hypoxia, and that GSV compliance is increased by hyperoxia, thus highlighting the often overlooked role of oxygen in the regulation of venous circulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.