Abstract

Background. In this study, we assessed the effects of normothermia and hypothermia during cardiopulmonary bypass (CPB) both on internal jugular venous oxygen saturation (SjvO2) and the regional cerebral oxygenation state (rSO2) estimated by near infrared spectroscopy (NIRS).Methods. Thirty patients scheduled for elective coronary artery bypass graft surgery (CABG) were randomly divided into two groups. Group 1 (n = 15) underwent surgery for normothermic (> 35°C) CPB, and group 2 (n = 15) underwent surgery for hypothermic (30°C) CPB, and alpha-stat regulation was applied. A 4.0-French fiberoptic oximetry oxygen saturation catheter was inserted into the right jugular bulb to continuously monitor the SjvO2 value. To estimate the rSO2 state, a spectrophotometer probe was attached to the mid-forehead. SjvO2 and rSO2 values were then collected simultaneously using a computer.Results. Neither the cerebral desaturation time (duration during SjvO2 value below 50%), nor the ratio of the cerebral desaturation time to the total CPB time significantly differed (normothermic group: 18 ± 6 min, 15 ± 6%; hypothermic group: 17 ± 6 min, 13 ± 6%, respectively). The rSO2 value in the normothermic group decreased during the CPB period compared with the pre-CPB period. The rSO2 value in the hypothermic group did not change throughout the perioperative period.Conclusions. These findings suggest that near infrared spectroscopy might be sensitive enough to detect subtle changes in regional cerebral oxygenation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.