Abstract
Microarc oxidation coatings on biomedical NiTi alloy were prepared in aluminate electrolytes with and without hypophosphate addition. The effect of hypophosphate concentrations on the characteristics of micro-arc oxidation coatings has been studied. The compositions and surface morphologies of the coatings prepared in different hypophosphate concentrations were determined by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Surface roughness (Ra) and bonding strength of the coatings were measured by surface roughmeter and a direct pull-off test, respectively. The corrosion resistance of the coatings was evaluated in Hank’s solution using potentiodynamic polarization tests. The results show that all of the coatings exhibit a typical porous surface structure and mainly consist of γ-Al2O3 crystal phase. With increasing the hypophosphate concentrations, the elemental contents of Ni, Ti and P increase while Al decreases; the pore sizes and surface roughness of the coatings decrease firstly, reaching a minimum value at 0.01mol/L, and then increase; at the same time, the bonding strength increases up to 60MPa, and then decreases. The corrosion resistance of the coatings decreases with the increase of the hypophosphate concentrations, but all of the coated samples is better than that of the uncoated NiTi alloy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.