Abstract

Plasma disruptions and edge localized modes can result in transient heat fluxes as high as 5 MW/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> on portions of a tokamak reactor first wall (FW). To accommodate these heat loads, the FW will likely use water-cooled hypervapotron heatsinks to enhance the heat transfer. In this article, we present the results of a computational fluid dynamics (CFD) study using 70 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">°</sup> C inlet water at 2.7 MPa to investigate the tooth height and backchannel depth of 50-mm-wide hypervapotrons with 6-mm-pitch and 3-mm side slots. We compare a popular design with 4-mm-high teeth and a 5-mm backchannel to a more optimal case with 2-mm-high teeth and a 3-mm backchannel under nominal heat loads (0.5 MW/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) on a 100-mm-heated length and under single-phase flow conditions. Better heat transfer in the latter case and the smaller backchannel permit a factor of two reduction in the required mass flow while maintaining the same beryllium armor surface temperatures near 130 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">°</sup> C. The shallow teeth and smaller backchannel allow the 40 fingers in a typical panel to flow in parallel and simplify the water circuit. A comparison of the two hypervapotron designs during off-normal loading (5.0 MW/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) and two-phase flow then follows. The design with 2-mm teeth has a 3.5% higher beryllium surface temperature of 648 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">°</sup> C and reduces the critical heat flux (CHF) by ~2%. Hypervapotron width also plays a role in heat transfer and CHF. CFD results for 36 and 70 mm wide hypervapotrons compared to the 50-mm case reveal similar thermal performance at low heat flux, but a reduction in CHF with increasing width. This study highlights the necessary compromise between design margin during transient events, effective heat transfer under nominal conditions, limitations on finger width, and the simplicity needed in the water circuit design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call