Abstract

Intracellular free sodium levels ([Na+]i) were assessed with 23Na nuclear magnetic resonance (NMR) spectroscopy in isolated, Langendorff-perfused normal, compensated hypertrophied, and hypertrophied failing guinea pig hearts under several conditions. Baseline [Na+]i measured with a shift reagent was significantly greater than normal in the compensated hypertrophied hearts (12.8 +/- 1.2 mmol/L v 6.4 +/- 0.7 mmol/L, means +/- SEM, P < .01), but not in the hypertrophied failing hearts (8.7 +/- 1.9 mmol/L, P = N.S.). Moreover, the highest levels of [Na+]i were seen just 3 to 4 weeks after aortic constriction. [Na+]i was inversely related to both time after aortic constriction (R = -0.71, P < .03) and to the degree of left ventricular hypertrophy (R = -0.79, P < .01), suggesting that the hypertrophied failing heart is capable of maintaining relatively normal [Na+]i. In addition, triple quantum filtered NMR measurements were made to assess changes in [Na+]i subsequent to altered perfusion or loading conditions. In hypertrophied failing hearts, but not normal hearts, low coronary perfusion pressure (60 cm H2O) was associated with relatively higher [Na+]i (ANOVA, P < .05), suggesting greater sensitivity of hypertrophied failing hearts to hypoperfusion. On the other hand, when all hearts were perfused at 90 cm H2O and intraventricular balloon volume was increased from 100 microL to 300 microL, [Na+]i increased significantly only in the normal guinea pig hearts (12.3 +/- 1.8%, P < .01). These findings suggest complex changes in the expression or modulation of proteins involved in Na+ regulation. Interpretation regarding the physiological significance of these changes depends on the specific mechanism(s) proposed. Previous work in this and other models of hypertrophy suggest that changes in the number or activity of both Na(+)-K(+)-ATPase and Na(+)-Ca2+ exchange proteins are involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.