Abstract

The effects of dizocilipine maleate (MK-801), a noncompetitive N-methyl-D-aspartate (NMDA) receptor/channel antagonist, were tested on the dysfunction of neurotransmitter and signal transduction systems and morphological damage 7 days after transient forebrain ischemia in gerbils. Neurotransmitter system (adenosine A1, muscarinic cholinergic receptor) and signal transduction system (inositol 1,4,5-trisphosphate receptor: IP 3, protein kinase C: PKC, L-type calcium channels) binding sites were mapped by in vitro quantitative receptor autoradiography. All ligands used in the present study decreased significantly in the CA1 subfield 7 days after ischemia. In normothermic animals, pretreatment with MK-801 failed to protect against decreased receptor binding in the hippocampus 7 days after ischemia. Moreover, in a morphological study, pre- and posttreatment of MK-801 failed to show protective effects against ischemic neuronal damage. On the other hand, pretreatment of MK-801, without maintaining body temperature, prevented the neuronal death of CA1 subfield 7 days after ischemia. These results weaken the hypothesis that NMDA receptor/channel may play a pivotal role in the pathogenesis of neuronal damage after transient forebrain ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.