Abstract

The novel selective laser melting (SLM) Al-Ni-Cu-Fe-Zr-Sc alloy has high temperature stability, but the segregation of the melting pool boundary limits its potential applications. Because conventional heat treatment with a solid solution at 530 °C is inappropriate for the SLM Al-Ni-Cu-Fe-Zr-Sc alloy, this study used hyper-high-temperature solid-solution treatment at three temperatures (560, 570, and 580 °C for 1 h) to investigate the evolution of the melting pool structure. An artificial aging treatment was applied at 175 °C for 6 h to investigate the precipitation mechanism. The results indicated that as-printed presented a bimodal microstructure consisting of a coarse-grained (CG) region and a fine-grained (FG) region. The hyper-high-temperature solid-solution treatment promoted the decomposition of the melting pool boundary and expansion of FG region. The FG region was composed of Ni-, Cu-, and Fe-rich equiaxed grains. After aging treatment, Al9Fe(Cu)Ni and Al3(Sc, Zr) nano-scale strengthening phases could be found in the FG region. The decomposition of the melting pool boundary, bimodal microstructure, and nano-scale phases can strengthen the matrix and increase hardness. In addition, the mechanism of element diffusion in melting pool was also explored to confirm that heat treatment can reduce material deterioration caused by boundary precipitation. These characteristics mitigate the disadvantages of the SLM Al-Ni-Cu-Fe-Zr-Sc alloy in terms of its strength directionality and establish its potential for use in aerospace applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.