Abstract

Photoreactive and degradable polymers with linear and hyperbranched architectures which composed of poly(ɛ-caprolactone) and hydroxycinnamic acid or its substituted derivatives were synthesized by thermal melt-polycondensation. The chemical structures of the polymers were confirmed by FTIR and 1H NMR measurements. The polymers showed good photoreactivities and fluorescent properties, and the hyperbranched polymers showed higher photoreactive speed and weaker fluorescence properties. These polymers had excellent thermal stabilities due to the rigid conjugated structures and the π-π strcking interaction of the cinnamoyl group, especially for the hyperbranched polymer. Moreover, the hydrolysis experiments and the XRD results revealed that the hyperbranched and linear polymers are amorphous and crystalline, respectively, and the degradation rate of amorphous polymers are faster than crystalline samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.