Abstract
Neuropsychiatric symptoms of hyperammonaemia include alterations of mood and personality, cognitive impairment, ataxia, convulsions and coma. The nature and severity of CNS dysfunction depend upon the aetiology and degree of hyperammonaemia, its acuteness of onset and the age of the patient. Neuropathological studies reveal Alzheimer type II astrocytosis in the adult hyperammonaemic patient, whereas hyperammonaemia in the infant resulting from congenital urea cycle disorders or Reye syndrome is accompanied by cerebral atrophy, neuronal loss and cerebral oedema. Several electrophysiological and biochemical mechanisms have been proposed to explain the deleterious effects of ammonia on CNS function. Such mechanisms include direct effects of the ammonium ion on excitatory and inhibitory neurotransmission and a deficit in cerebral energy metabolism due to ammonia-induced inhibition of alpha-ketoglutarate dehydrogenase. In addition, ammonia has been shown to interfere with normal processes of uptake, storage and release of various neurotransmitters. Ammonia disrupts monoamine storage, inhibits the high-affinity uptake of glutamate by both astrocytic and neuronal elements and activates 'peripheral-type' benzodiazepine receptors leading to the potential synthesis of neuroactive steroids in brain. On the basis of these actions, it has been proposed that ammonia disrupts neuron-astrocyte trafficking of amino acids and monoamines in brain. The increased formation of brain glutamine in hyperammonaemic syndromes could be responsible for the phenomenon of brain oedema in these disorders. Therapies aimed at either decreasing ammonia production in the gastrointestinal tract or increasing ammonia removal by liver or skeletal muscle are the mainstay in the prevention and treatment of the CNS consequences of hyperammonaemia. New therapeutic approaches aimed at correction of the neurotransmitter and cerebral energy deficits in these syndromes could hold promise for the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.