Abstract

Effects of a hydrotropic salt, sodium salicylate (NaSal), on the dynamic behavior of cationic dodecyltrimethylammonium bromide (DTAB) micelles as studied using dynamic light scattering (DLS) and quasielastic neutron scattering (QENS) techniques are reported here. DLS study showed that the addition of NaSal leads to a decrease in the apparent diffusion coefficient of the whole micelle indicating micellar growth. QENS data analysis suggested that observed dynamics involves two distinct motions, lateral motion of the surfactant over the curved micellar surface and localized segmental motion of the surfactant. It is found that the addition of NaSal slows down the lateral motion of DTAB while the localized segmental motion of the DTAB chain is not affected much. An atomistic molecular dynamics (MD) simulation was performed to gain further insight into the underlying phenomena. MD simulation results are found to be consistent with the experimental observations. MD simulation revealed that location of the salicylate ions on the micellar surface and their strong electrostatic association with their oppositely charged surfactant headgroup are the major factors in slowing down the lateral motion of the DTAB molecule. In the present work, a quantitative description of the effects of NaSal on the nanoscopic dynamics of DTAB micelles and its correlation with the microstructure of the micelle is provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.