Abstract

This paper presents an investigation on the effects of hydrothermal aging on carbon fibre reinforced polymer (CFRP) composites with different interfacial bonding strength. The combination of electrochemical oxidation and sizing treatments effectively enhanced the long-term interlaminar shear strength (ILSS) retention from 0.24–0.38 to 0.74–0.86 for CFRP in hydrothermal environment, which basically met the specified environmental reduction factor CE (0.85) given in ACI 440.2R-08. The improved durability of fibre/epoxy interface was also evidenced by the moisture absorption and desorption tests and scanning electron microscopy (SEM). In addition, the dynamic mechanical thermal analysis (DMTA) was directly used to characterize the degradation of interface adhesion for CFRP, and the damping at fibre/epoxy interface (tan δin) was evaluated and finally linked with the ILSS results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.