Abstract

Gold nanoparticles (AuNPs) are promising candidates in various biomedical applications such as sensors, imaging, and cancer therapy. Understanding the influence of AuNPs on lipid membranes is important to assure their safety in the biological environment and to improve their scope in nanomedicine. In this regard, the present study aimed to analyze the effects of different concentrations (0.5, 1, and 2 wt.%) of dodecanethiol functionalized hydrophobic AuNPs on the structure and fluidity of zwitterionic 1-stearoyl-2-oleoyl-sn-glycerol-3-phosphocholine (SOPC) lipid bilayer membranes using Fourier-transform infrared (FTIR) spectroscopy and fluorescent spectroscopy. The size of AuNPs was found to be 2.2 ± 1.1 nm using transmission electron microscopy. FTIR results have shown that the AuNPs induced a slight shift in methylene stretching bands, while the band positions of carbonyl and phosphate group stretching were unaffected. Temperature-dependent fluorescent anisotropy measurements showed that the incorporation of AuNPs up to 2 wt.% did not affect the lipid order in membranes. Overall, these results indicate that the hydrophobic AuNPs in the studied concentration did not cause any significant alterations in the structure and membrane fluidity, which suggests the suitability of these particles to form liposome-AuNP hybrids for diverse biomedical applications including drug delivery and therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.