Abstract

A large amount of kitchen waste is produced all over the world. Biochemical disposal is an effective method for the reduction and safe utilization of kitchen waste. However, high salinity, low maturity and poor biocompatibility were encountered when utilizing the biochemical residue of kitchen waste (BRKW) as a kind of soil amendment. To reduce the high salinity, accelerate the maturity and improve the biocompatibility in the BRKW, this study used the BRKW as the main feedstock for earthworms after hydrolyzed polymaleic anhydride (HPMA) was added and focused on revealing the effect of HPMA addition combined with the vermicomposting process on the growth of earthworms and on the basic physicochemical properties and the microbial diversity of the derived vermicompost. The results showed that HPMA addition can promote earthworm growth and reproduction. The pH, electric conductivity, organic matter content, C/N and NH4+-N/NO3--N were decreased in the final vermicompost, while total nitrogen, total phosphorus and total potassium contents, and the seed germination index were increased. Scanning electron microscopy analysis showed that there was more disintegration in the final vermicompost. Meanwhile, adding the HPMA also helped to decrease the total number of fungi while increasing the populations of nitrogen-fixing bacteria, phosphorus-solubilizing bacteria and potassium-solubilizing bacteria as well as amount of total bacteria and actinomycetes. The vermicomposting process increased the bacterial phyla that promote the degradation of OM, such as Actinobacteria, Firmicutes and Acidobacteria, decreased the pathogenic Enterobacter and increased the bacterial genera that promote the maturity and quality, such as Cellvibrio and Pseudomonas. Thus, HPMA addition combined with vermicomposting can promote the growth of beneficial bacteria that promote the degradation of lignocelluloses and accelerate maturity while inhibiting some potential bacterial pathogens, which helps guarantee the safety of vermicomposting products from BRKW. Hence, employing HPMA to promote BRKW vermicomposting can possibly reduce salt content and improve the maturity and biocompatibility of the final vermicompost. This approach may help realize the safe utilization of BRKW and further promote the biochemical disposal of kitchen waste.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.