Abstract

Herein, polyvinyl alcohol based anion exchange membranes (AEMs) doped with various cobalt and chloride salts are synthesized to investigate the structure-performance relationship of ion-doped AEMs systemically. The performances of ion-doped AEMs are found to be related to the hydrolysis degree (DH) of the doped anions and cations. It is found that cations with varying DH transformed into hydroxides with different sizes and dispersions, which plays a key role in determining the structures and properties of cation-doped AEMs. On the other hand, weak-acid anions remained in the AEMs after alkali immersion, hindering OH− conduction and leading to the degradation of the anion-doped AEMs. High DH cations mildly react with the matrix and transform into more dispersive complexes, while low DH anions are replaced by OH−.The direct borohydride fuel cell using CuCl2-doped AEM exhibits a maximum power density of 202.4 mW cm−2 at 30 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.