Abstract

To investigate the effects of hydrogen-rich medium on lipopolysaccharide (LPS)-induced intestinal epithelial barrier dysfunction of human intestinal epithelial (Caco2) cells. Caco2 cells (passages 28-35) were purchased from the Cell Bank of the Shanghai Institute of Cell Biology, Chinese Academy of Sciences in Shanghai, China, and they were cultured in Dulbecco minimum essential medium (DMEM) containing 20% fetal bovine serum. These cells were randomly divided into four groups: control group (group A), hydrogen-rich medium group (group B), LPS group (group C) and LPS + hydrogen-rich medium group (group D). Cells were cultured with normal medium in group A and group C or with hydrogen-rich medium in group B and group D. Meanwhile, 1 g/L LPS was simultaneously added into group C and group D, while an equivalent volume of normal saline was added into group A and group B instead. In vitro intestinal epithelial models were reproduced with monolayer filter-grown Caco2 and intestinal epithelium. The trans-epithelial electrical resistance (TEER) in models of each group was measured at different incubation times (0, 3, 6, 12, 24 and 48 hours). Cell viability and cytotoxicity were assessed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) release assay, respectively, after incubation for 24 hours. The expression levels of claudin-1 and occludin were respectively determined at 6, 12 and 24 hours of incubation by Western Blot assay. The morphological structure of claudin-1 and occludin was respectively observed after incubation for 24 hours with immunofluorescence staining. There was no statistical significance in variables between group A and group B. Compared with group A, it was shown that TEER was time-dependently decreased in groups C and D after 6 hours. Compared with group C, TEER in group D was increased after 6 hours. Compared with group A, the cell viability was significantly reduced in group C [(67.2±7.9)% vs. (100.0±0.0)%, P < 0.05] and cell injury was obvious [LDH release rate: (38.5±2.1)% vs. (1.2±0.3)%, P < 0.05]; the expression levels of claudin-1 and occludin at 6, 12, 24 hours were significantly down-regulated [claudin-1 (gray value): 0.351±0.079, 0.272±0.075, 0.190±0.049 vs. 0.518±0.030; occludin (gray value): 0.416±0.044, 0.290±0.062, 0.226±0.019 vs. 0.602±0.038, all P < 0.05], and the structure of claudin-1 and occludin were profoundly disrupted. Compared with group C, it was shown that the cell viability was significantly increased in group D [(88.8±7.4)% vs. (67.2±7.9)%, P < 0.05] and cell injury was significantly abated [LDH release rate: (16.4±4.3)% vs. (38.5±2.1)%, P < 0.05]; the expression levels of claudin-1 and occludin were significantly up-regulated at 24 hours [claudin-1 (gray value): 0.428±0.046 vs. 0.190±0.049, occludin (gray value): 0.466±0.071 vs. 0.226±0.019, both P < 0.05]; the disrupted structures of claudin-1 and occludin were partially recovered. Hydrogen-rich medium can effectively attenuate LPS-induced dysfunction of intestinal epithelial barrier in human Caco2 cells by ameliorating cell viability as well as regulating claudin-1 and occludin expression and structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call