Abstract

Our previous work indicated that energy transduction, as measured by myocyte respiration, was inhibited by hydrogen peroxide, but the mitochondrial membrane potential was relatively unaffected. Therefore, we determined in the present study the critical steps in mitochondrial energy transduction by measuring the sensitivity to hydrogen peroxide of NADH-CoQ reductase, ATP synthase, and adenine nucleotide translocase in situ in myocytes. Adult rat heart cells were isolated using collagenase and incubated in the presence of 0.1-10 mM hydrogen peroxide for 30 min. Activities of NADH-CoQ reductase and oligomycin-sensitive ATP synthase were assayed enzymatically with sonicated myocytes, and adenine nucleotide translocase activities were determined by atractyloside-inhibitable [14C]ADP uptake of myocytes, permeabilized by saponin. The NADH-CoQ reductase and ATP synthase activities were inhibited to 77% and 67% of control, respectively, following an exposure to 10 mM hydrogen peroxide for 30 min. The adenine nucleotide translocase activities were inhibited in a concentration- and time-dependent manner and by 10 mM hydrogen peroxide to 44% of control. The dose-response relationship indicated that the translocase was the most susceptible to hydrogen peroxide among the three enzymes studied. Combined treatment of myocytes with 3-amino-1,2,4-triazole, 1,3-bis(2-chloroethyl)-1-nitrosourea and diethyl maleate (to inactivate catalase, to inhibit glutathione reductase activity, and to deplete glutathione, respectively) enhanced the sensitivity of translocase to hydrogen peroxide, supporting the view that the cellular defense mechanism is a significant factor in determining the toxicity of hydrogen peroxide. The results indicate that hydrogen peroxide can cause dysfunction in mitochondrial energy transduction, principally as the result of inhibition of adenine nucleotide translocase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.