Abstract

This study investigates laser-cladded high entropy alloy (HEA) coatings on high-speed train axles to enhance wear resistance under specific fretting conditions. Axles in humid and acidic environments absorb hydrogen, leading to accumulation in grain boundaries, which weakens their structure and causes damage under alternating stress. Despite this, the impact of hydrogen damage on the fretting wear behavior of HEA coatings has not been explored. To address this, we performed fretting wear tests on a laser-cladded FeCoCrNiMo0.2 coating and a GCr15 steel ball friction system, evaluating their performance before and after hydrogen exposure. The results of the study indicate that under a constant load of Fn=10N and a displacement amplitude of D=50μm, the friction coefficient, maximum wear depth, wear volume, and wear rate increased when the system was in the hydrogen charging state compared to the non-hydrogen charging state. Specifically, the friction coefficient increased from 0.60 to 0.93, the maximum wear depth increased from 2.82μm to 3.63μm, the wear volume increased from 14.106×104μm3 to 22.098×104μm3, and the wear rate increased from 28.213×10-6 mm/Nm to 36.600×10-6 mm/Nm. Under the hydrogen charging state, the friction coefficient, maximum wear depth, wear volume, and wear rate all increased. This is due to hydrogen damage, including the formation of pitting pits and cracks on the surface of the coating, stress concentration, and brittle failure caused by hydrogen infiltration into the material. The presence of hydrogen makes the surface of the coating more prone to detachment, resulting in finer wear debris, deeper grooves, and increased oxidation. These factors accelerate the wear of the coating. This finding will contribute to the development and improvement of advanced surface modification techniques for materials in the hydrogen environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.