Abstract

AbstractThe properties of InGaAsN V‐groove QWRs are assessed here by polarization‐dependent photoluminescence (PL) and micro‐magneto‐PL. Both the polarization anisotropy of the QWR emission and the strong dependence of the diamagnetic shift on the orientation of the applied magnetic field confirm the 1D nature of the QWR excitons. Further, the possibility of passivating N impurities by H irradiation is used to estimate the N content (x) in the QWRs by turning off the effects of N incorporation. Both the H‐induced blueshift of the QWR emission (70 meV) and the measured value of the electron effective mass are consistent with x ∼1%. Nitrogen is also found to enhance the In intake in the QWR, likely due to the strain reduction resulting from the smaller lattice parameter of the InGaAsN alloy. Such strain reduction is also responsible for the quick decay of the degree of linear polarization (ρ) of the QWR emission with increasing temperature, indicating a small splitting between the QWR valence‐band levels. In fully hydrogenated samples, conversely, ρ remains roughly constant up to ∼240 K, suggesting the recovery of a larger energy separation between the QWR hole states upon N passivation. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.