Abstract

L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia is a side effect of Parkinson's disease treatment and it is characterized by atypical involuntary movements. A link between neuroinflammation and L-DOPA-induced dyskinesia has been documented. Hydrogen gas (H2) has neuroprotective effects in Parkinson's disease models and has a major anti-inflammatory effect. Our objective is to test the hypothesis that H2 inhalation reduces L-DOPA-induced dyskinesia. 15 days after 6-hydroxydopamine lesions of dopaminergic neurons were made (microinjection into the medial forebrain bundle), chronic L-DOPA treatment (15 days) was performed. Rats were exposed to H2 (2% gas mixture, 1 h) or air (controls) before L-DOPA injection. Abnormal involuntary movements and locomotor activity were conducted. Striatal microglia and astrocyte was analyzed and striatal and plasma samples for cytokines evaluation were collected after the abnormal involuntary movements analysis. H2 inhalation attenuated L-DOPA-induced dyskinesia. The gas therapy did not impair the improvement of locomotor activity achieved by L-DOPA treatment. H2 inhalation reduced activated microglia in the lesioned striatum, which is consistent with the observed reduced pro-inflammatory cytokines levels. Display of abnormal involuntary movements was positively correlated with plasma IL-1β and striatal TNF-α levels and negatively correlated with striatal IL-10 levels. Prophylactic H2 inhalation decreases abnormal involuntary movements in a preclinical L-DOPA-induced dyskinesia model. The H2 antidyskinetic effect was associated with decreased striatal and peripheral inflammation. This finding has a translational importance to L-DOPA-treated parkinsonian patients' well-being.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.