Abstract
This study aims at understanding the change of the hydrogen embrittlement mechanism with respect to hydrogen content of a precipitation-strengthened Fe–Ni–Cr-based steel. Hydrogen was electrochemically introduced with different current densities. The hydrogen-charging deteriorated crack initiation and propagation resistances as well as the crack tip blunting capability. Further, with increasing hydrogen content, the primary cracking sites changed from coarse carbides to slip bands, and then to grain boundaries. Moreover, because the crack initiation probability increased and the resistance to trans-granular crack propagation decreased with hydrogen content, the crack coalescence associated with slip localization occurred more frequently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.