Abstract

ZnO-based transparent conducting oxide (TCO) thin films have received increased attention recently because of their potential to reduce production costs compared to those of the prevalent TCO indium tin oxide (ITO). Undoped ZnO and ZnO:Al (0.1, 0.2, 0.5, 1, and 2wt% Al2O3) polycrystalline films were deposited by RF magnetron sputtering. Controlled incorporation of H2 and O2 in the Ar sputtering ambient was investigated. Though optimal substrate temperature was found to be 200°C for films grown in 100% Ar, the addition of H2 permits improved electrical performance for room-temperature depositions. Temperature-dependent Hall data suggest that ionized impurity and acoustic phonon scattering dominate at high and intermediate carrier concentration levels, respectively, with evidence of temperature-activated transport at the lowest levels. Lightly doped ZnO:Al demonstrates reduced infrared absorption compared to the standard 2wt%-doped ZnO:Al, which may be beneficial to device performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.