Abstract

Alcohols are oxygenated fuels, holding a good reputation among alternatives, but single alcohol does not possess all qualities. Besides, the high latent heat and low vapor pressure limit their uses in SI engines. Hence, an energy enhancing and combustion promoting fuel helps overcome the drawbacks, among all available hydrogen fits the race most. Hence, hydrogen-assisted combustion of equivolume blend of ethanol/butanol (ENBOL) is experimentally tested under various compression ratios (CR) (11–15), ignition timing (16°CA-24°CA BTDC) for three hydrogen fractions (5%–15%) at three speeds (1400RPM-1800RPM). The experimental outcome notices an increase in brake power (BP), brake thermal efficiency (BTE), peak pressure (Pmax), heat release rate (HRRmax), and NOx emissions with increasing CR and Hydrogen addition. The combustion duration, CO, and UBHC emissions reduce while CO2 emissions reduce with hydrogen; increasing CR notices a drop in CO2 at a much advanced or much-delayed ignition. Hydrogen improves combustion but reduces volumetric efficiency; increasing CR improves it, and hydrogen effect reduces with increasing CR. BP, BTE, and CA10-90 improve with retarding ignition from 24°CA, while CA10, Pmax, and HRRmax reduce continuously. UBHC and CO emissions increase while NOx reduces with retarding ignition. The ignition timing of 20°CA at CR15 and 15% hydrogen performed better than gasoline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call