Abstract

A hydraulic retention time (HRT) of 4, 6, and 8h was employed, respectively, in three reactors to study the effects of HRT on granulation with a newly developed fast granulation strategy, i.e., a strategy by combining strong hydraulic selection pressure with high organic loading rate (OLR). Granules with clear boundary appeared within 24h after reactor start-up and all reactors reached a pseudo steady state after 6-day operation. A 4-h HRT resulted in a relatively higher increasing rate in terms of granule size during granule development period, i.e., 208μm day(-1), and the bigger granule size and the higher sludge volume index at the pseudo steady state. For HRT of 6 or 8h, no obvious difference was observed. However, it was found that HRT influenced sludge retention time (SRT) and kinetics significantly. A HRT changing from 4 to 8h led to an increased SRT from 3 to 21days, a decreased observed specific biomass growth rate (μ obs) and an decreased observed biomass yield (Y obs) of stable granules from 0.37 to 0.062days(-1), and 0.177 to 0.055g MLVSS g(-1) COD, respectively. Both μ obs and Y obs had a linear relationship with the reciprocal of HRT. In addition, the great difference of microbial community between seed sludge, sludge retained in the reactors, and sludge washed out indicated a strong microbial selection for fast granulation within 24h. However, during the granule development period from day 1 to 6, no more microbial selection was observed except an adjustment of microbial community. Little influence of HRT on microbial population in granular sludge indicated a minor role of HRT played for granulation with the fast start-up strategy adopted in this study. The results demonstrated that hydraulic selection pressure for granulation was mainly from short settling time, which led to strong microbial selection during the granulation period. Meanwhile, although HRT did not affect granulation with the fast start-up strategy, it played an important role on sludge retention time and excess sludge production. Therefore, HRT should be carefully optimized to balance benefits and shortfalls it brings to aerobic granular sludge system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.