Abstract

It is well known that water plays a very important role in the performance of proton exchange membrane (PEM) fuel cells. Non-uniform water content in the membrane leads to non-uniform ionic resistance, and non-uniform liquid water fraction in the porous electrode causes varied mass transfer resistances. The objective of this work is to study the effects of different anode and cathode humidification temperatures on local current densities of a PEM fuel cell with a co-flow serpentine flow field. The method used is the current distribution measurement gasket technique [H. Sun, G.S. Zhang, L.J. Guo, H. Liu, J. Power Sources 158 (2006) 326–332]. The experimental results show that both air and the hydrogen need to be humidified to ensure optimal cell performance, and too high or too low humidification temperature can cause severe non-uniform distribution of local current density. From the experimental results of local current density distributions, the local membrane hydration, the optimal humidification temperature, and if flooding occurs can be obtained. Such detailed local measurement results could be very valuable in fuel cell design and operation optimizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.