Abstract

This study aims to observe the function of umbilical cord-mesenchymal stem cells (UC-MSCs) labelled with enhanced green fluorescent protein (eGFP) in the repair of renal ischaemia-reperfusion (I/R) injury, to determine the effects on inflammatory cascade in an established rat model and to explore possible pathogenesis. Sixty rats were randomly divided into three groups: the sham-operated, I/R and UC-MSC treatment groups. All rats underwent right nephrectomy. Ischaemia was induced in the left kidney by occlusion of the renal artery and vein for 1hour, followed by reperfusion for 24 hours or 48 hours. Kidney samples were collected to observe morphological changes. Immunohistochemistry was performed to assess the expression of intercellular adhesion molecule 1 (ICAM-1) in the renal tissue sample, as well as the number of infiltrating polymorphonuclear neutrophils (PMNLs) and UC-MSCs with positive eGFP. Renal histopathological damages and the expression of ICAM-1 and PMNL increased significantly in the I/R group compared with those in the sham-operated group, whereas the damages were less conspicuous in the UC-MSC treatment group. Renal ICAM-1, which mediated PMNL infiltration and contributed to renal damage, was significantly up-regulated in the I/R group. UC-MSCs were identified to inhibit these pathological processes and protect the kidney from I/R injury.

Highlights

  • Renal ischaemia-reperfusion (I/R) injury is commonly observed in clinic and is considered as the main cause of acute renal failure (ARF)

  • Inflammatory cell infiltration was less serious in the umbilical cord mesenchymal stem cells (UC-Mesenchymal stem cells (MSCs)) group compared with the I/R groups (Figures 1E, F and G)

  • Caudal vein injection with UC-MSCs was performed for the treatment of renal I/R rats

Read more

Summary

Objective

This study aims to observe the function of umbilical cord-mesenchymal stem cells (UC-MSCs) labelled with enhanced green fluorescent protein (eGFP) in the repair of renal ischaemia-reperfusion (I/R) injury, to determine the effects on inflammatory cascade in an established rat model and to explore possible pathogenesis. Materials and Methods: Sixty rats were randomly divided into three groups: the sham-operated, I/R and UC-MSC treatment groups. Immunohistochemistry was performed to assess the expression of intercellular adhesion molecule 1 (ICAM-1) in the renal tissue sample, as well as the number of infiltrating polymorphonuclear neutrophils (PMNLs) and UC-MSCs with positive eGFP. Results: Renal histopathological damages and the expression of ICAM-1 and PMNL increased significantly in the I/R group compared with those in the sham-operated group, whereas the damages were less conspicuous in the UC-MSC treatment group.

INTRODUCTION
MATERIALS AND METHODS
RESULTS
DISCUSSION
13. Tsien RY
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call