Abstract

This study investigated the effects of human trampling on cover, diversity and species richness in an alpine heath ecosystem in northern Sweden. We tested the hypothesis that proximity to trails decreases plant cover, diversity and species richness of the canopy and the understory. We found a significant decrease in plant cover with proximity to the trail for the understory, but not for the canopy level, and significant decreases in the abundance of deciduous shrubs in the canopy layer and lichens in the understory. Proximity also had a significant negative impact on species richness of lichens. However, there were no significant changes in species richness, diversity or evenness of distribution in the canopy or understory with proximity to the trail. While not significant, liverworts, acrocarpous and pleurocarpous bryophytes tended to have contrasting abundance patterns with differing proximity to the trail, indicating that trampling may cause shifts in dominance hierarchies of different groups of bryophytes. Due to the decrease in understory cover, the abundance of litter, rock and soil increased with proximity to the trail. These results demonstrate that low-frequency human trampling in alpine heaths over long periods can have major negative impacts on lichen abundance and species richness. To our knowledge, this is the first study to demonstrate that trampling can decrease species richness of lichens. It emphasises the importance of including species-level data on non-vascular plants when conducting studies in alpine or tundra ecosystems, since they often make up the majority of species and play a significant role in ecosystem functioning and response in many of these extreme environments.

Highlights

  • Human recreational activities cause mechanical disturbances in natural ecosystems with undesirable effects on vegetation, such as changes in cover, species composition, diversity, plant height and increased risk of invasive species or weeds (Scott and Kirkpatrick 1994; Cole 2004; Pickering and Growcock 2009; Crisfield et al 2012; Barros et al 2013)

  • This study investigated trampling effects on species abundance, species richness and diversity at whole community level in a high alpine heath ecosystem in northern Sweden by analysing plant, bryophyte and lichen composition in transects perpendicular to a permanent trail used at low frequency by hikers

  • Proximity to the trail caused significant decreases in the abundance of deciduous shrubs in the canopy layer and total vegetative cover and lichens decreased with proximity to the trail in the understory, but no significant changes were found for the graminoids, forbs, bryophytes or plants in the understory

Read more

Summary

Introduction

Human recreational activities cause mechanical disturbances in natural ecosystems with undesirable effects on vegetation, such as changes in cover, species composition, diversity, plant height and increased risk of invasive species or weeds (Scott and Kirkpatrick 1994; Cole 2004; Pickering and Growcock 2009; Crisfield et al 2012; Barros et al 2013). Most previous studies of human disturbance of vegetation have focused on the impacts on vascular plants (Cole 1995b; Whinam and Chilcott 1999; Cole and Monz 2002; Whinam and Chilcott 2003; Pickering and Growcock 2009; Bernhardt-Römermann et al 2011; Barros et al 2013; Pescott and Stewart 2014), while the impacts on plant community composition, bryophytes or lichens are less well documented (cf Gremmen et al. Jägerbrand and Alatalo SpringerPlus (2015) 4:95. In Rocky Mountain national park, USA, the regeneration of severely degraded alpine tundra after trampling will probably take more than a century (Willard et al 2007)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call