Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability in the population worldwide, with a broad spectrum of symptoms and disabilities. Posttraumatic hyperexcitability is one of the most common neurological disorders that affect people after a head injury. A reliable animal model of posttraumatic hyperexcitability induced by TBI which allows one to test effective treatment strategies is yet to be developed. To address these issues, in the present study, we tested human embryonic stem cell–derived neural stem cell (NSC) transplantation in an animal model of posttraumatic hyperexcitability in which the brain injury was produced in one hemisphere of immunodeficient athymic nude rats by controlled cortical impact, and spontaneous seizures were produced by repeated electrical stimulation (kindling) in the contralateral hemisphere. At 14 wk posttransplantation, we report human NSC (hNSC) survival and differentiation into all 3 neural lineages in both sham and injured animals. We observed twice as many surviving hNSCs in the injured versus sham brain, and worse survival on the kindled side in both groups, indicating that kindling/seizures are detrimental to survival or proliferation of hNSCs. We also replicated our previous finding that hNSCs can ameliorate deficits on the novel place recognition task,33 but such improvements are abolished following kindling. We found no significant differences pre- or post-kindling on the elevated plus maze. No significant correlations were observed between hNSC survival and cognitive performance on either task. Together these findings suggest that Shef6-derived hNSCs may be beneficial as a therapy for TBI, but not in animals or patients with posttraumatic hyperexcitability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.