Abstract

BackgroundThe importance of ERBB2/NEU/HER2 in the response of breast tumours to the heat shock protein 90 (HSP90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG; tanespimycin) has been demonstrated in the clinic. ERBB2 is an oncoprotein client that is highly dependent on HSP90. This and other oncogenic client proteins (e.g. B-RAF, C-RAF, ALK and CDK4) are depleted by 17-AAG in both animal tumours and patients. Here we investigate by Magnetic Resonance Spectroscopy (MRS) the metabolic response of 17-AAG in spontaneous, NEU/HER2 driven mammary tumours in transgenic MMTV-NEU-NT mice and in cells isolated and cultured from these tumours.MethodsMammary tumours were monitored by 31P MRS in vivo and in tumour extracts, comparing control and 17-AAG treated mice. A cell line derived from NEU/HER2 mammary tumours was also cultured and the effect of 17-AAG was measured by 31P MRS in cell extracts. Molecular biomarkers were assessed by immunoblotting in extracts from cells and tumours. For comparison of tumour volume, metabolite concentrations and Western blot band intensities, two-tailed unpaired t-tests were used.ResultsThe NEU/HER2 mammary tumours were very sensitive to 17-AAG and responded in a dose-dependent manner to 3 daily doses of 20, 40 and 80mg/kg of 17-AAG, all of which caused significant regression. At the higher doses, 31P MRS of tumour extracts showed significant decreases in phosphocholine (PC) and phosphoethanolamine (PE) whereas no significant changes were seen at the 20mg/kg dose. Extracts of isolated cells cultured from the mammary carcinomas showed a significant decrease in viable cell number and total PME after 17-AAG treatment. Western blots confirmed the expected action of 17-AAG in inducing HSP72 and significantly depleting HSP90 client proteins, including NEU/HER2 both in tumours and in isolated cells.ConclusionsThe data demonstrate the high degree of sensitivity of this clinically relevant NEU/HER2-driven tumour model to HSP90 inhibition by 17-AAG, consistent with the clinical data, and suggest that the metabolic signature of choline phospholipids obtained by MRS could be useful both as a preclinical and clinical tool for investigating surrogate markers of response to treatment.

Highlights

  • The importance of ERBB2/NEU/HER2 in the response of breast tumours to the heat shock protein 90 (HSP90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG; tanespimycin) has been demonstrated in the clinic

  • ERBB2/HER2 is one of the most sensitive client proteins of HSP90 [6,7], and 17-AAG has been shown to cause depletion of ERBB2/HER2 leading to significant growth inhibition in ERBB2/HER2 overexpressing breast cancer cells and tumour xenografts [8], and more importantly to cause regression in trastuzumab-refractory ERBB2/HER2 positive breast cancer patients [1,2,3]

  • These results show that 17-AAG caused a significant depletion of HSP90 client proteins, including NEU/HER2 in the MMTV-NEUNT tumour model at 20mg/kg and 40mg/kg

Read more

Summary

Introduction

The importance of ERBB2/NEU/HER2 in the response of breast tumours to the heat shock protein 90 (HSP90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG; tanespimycin) has been demonstrated in the clinic. The novel anticancer drug 17-allylamino-17-demethoxygeldanamycin (17-AAG; tanespimycin), which inhibits the molecular chaperone HSP90, has shown activity against breast cancer in the clinic [1,2,3]. Regressions were seen only in patients with metastatic breast cancer that was positive for ERBB2/HER2, a very sensitive oncoprotein client of HSP90. ERBB2/HER2 is one of the most sensitive client proteins of HSP90 [6,7], and 17-AAG has been shown to cause depletion of ERBB2/HER2 leading to significant growth inhibition in ERBB2/HER2 overexpressing breast cancer cells and tumour xenografts [8], and more importantly to cause regression in trastuzumab-refractory ERBB2/HER2 positive breast cancer patients [1,2,3]. Data from Phase 2 trials have recently confirmed this impressive anti-tumour activity of 17-AAG and validated HSP90 as a therapeutic target for ERBB2/HER2-driven breast cancer [2]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call