Abstract

Hsian-tsao polysaccharide (HTP) with preferable biological activities was explored to improve the gel qualities of surimi. This study investigated the effects of HTP (0–1.0 mg/mL) on structural changes, in vitro digestibility, and fishy odor binding capacity of heat-induced myosin gels (30 mg/mL). HTP promoted the unfolding of myosin structure with transitions from α- helixes to β-sheets, accompanied by the enhancement of hydrophobic bonds, hydrogen bonds, and non-disulfide covalent bonds dominated within gel networks. Moreover, HTP facilitated the formation of compact gel structures of myosin with superior elastic properties (G′ > G′′) and apparent viscosity, but without affecting the final in vitro digestibility. Moreover, the microstructure of gels markedly affected the adsorption rate of flavor compounds, with a lower adsorption rate obtained for myosin-HTP gels with compact gel networks embedded with evenly small cavities. Additionally, HTP affected the flavor-binding capacities of myosin gels by increasing hexanal and heptanal, but reducing nonanal and 1-octen-3-ol, in relation to the combined effects of myosin structural changes and newly formed gel networks. This work provides a new prospect for application of HTP to regulate the adsorption rate and binding capacity of myosin gels to fishy odors, critical for improvement of gel properties in surimi products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call