Abstract

Agrobacterium vitis is responsible for the crown gall disease of grapevine which breaks the grapevine trunk vascular system. Nutrient flow is prevented by crown gall and it leads to weak growth and death of the plants. It can be destructive disease often encountered in vineyards and it can be spread in cuttings for propagation. Thermotherapy treatment is an alternative method for eradicating A. vitis from grapevine cuttings but effects of thermotherapy treatments on dormant vine tissue, bud vitality, rooting and shooting of the propagation materials are not yet fully understood. In this research, it is aimed to determine the effects of thermotherapy treatment (Hot water treatment) on callus formation (at the basal part and grafting point), grafted vine quality (shoot length, shoot width, root number, shooting and rooting development, fresh and dry weight of shoots and roots) and final take in the grafted vine production. Experiment was conducted in the nursery of Manisa Viticultural Research Institute. Rootstocks (Kober 5BB, Couderc 1613 and 41B) and scions (Sultan 7 and Manisa sultani) were hot-water treated at 50°C for 30 minutes which is the most common technique against Agrobacterium vitis . After thermotherapy treatment, all rootstocks were grafted with Sultan 7 and Manisa sultanivarieties. They were kept for 22 days in callusing room for callus development and then they were planted in polyethlyene bags for rooting. At the end of the study, significant treatment x rootstock interaction were observed for the final take of Sultan 7 variety. Thermotherapy treated of 1613C/Sultan 7 combinations had more final take than the control (untreated) group. For instance, hot water treated cuttings of 1613C/Sultan 7 combinations had 75% final take while the control group had the 70%. Also there were not observed any adverse effects of HWT on bud and tissue vitality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.