Abstract
This paper is a report on the effect of a single perpendicular grain boundary on the hot-carrier and high current stability in high performance polycrystalline silicon (poly-Si) thin film transistors (TFTs). Under a hot carrier stress condition (Vg = Vth + 1 V, Vd = 12 V), the poly-Si TFT with a single grain boundary is superior to the poly-Si without any grain boundary because of the smaller free carriers available for electric conduction. The shift of transconductance in poly-Si TFT with a single grain boundary is less than 5% after hot carrier stress during a period of 1000 s. The shift of transconductance is about 25% in the case of the poly-Si TFTs without a grain boundary in the channel. On high current stress, the poly-Si TFT without the grain boundary is less degraded than the poly-Si TFT with the grain boundary because the concentrated electric field near the drain junction is lower.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.