Abstract

AbstractTo analyze the effects of horizontal resolution on hourly precipitation, four Atmospheric Model Intercomparison Project simulations are carried out using the Chinese Academy of Sciences Earth System Model (CAS-ESM) and the Community Earth System Model (CESM) during 1998–2016. They include CAS-ESM at resolutions of 1.4° latitude × 1.4° longitude (CAS-ESM L) and 0.5° × 0.5° (CAS-ESM H), and CESM at resolutions of 1.9° latitude × 2.5° longitude (CESM L) and 0.47° × 0.63° (CESM H), respectively. We focus on the simulated hourly precipitation frequency and assess the frequency with respect to high-resolution satellite observations and reanalysis. The high-resolution experiments show some improvements of measurable precipitation (>0.02 mm h−1) frequency. Noticeable improvement of heavy rainfall (>2 mm h−1) frequency is demonstrated at the high resolutions. The zonal mean, seasonal mean, and area-weighted average frequency support the above results. The high-resolution experiments outperform the low-resolution experiments in reproducing hourly precipitation intensity and amount. The added value is apparent in heavy precipitation intensity from CAS-ESM H and CESM H. Over the monsoon regions and tropical convergence zones, the patterns of probability density functions for precipitation from high-resolution experiments are closer to the observations and reanalysis than those from the low-resolution simulations. The improvement of measurable precipitation frequency is mainly caused by the reductions of the convective rainfall occurrence at high resolutions. The increasing large-scale precipitation and reasonable integrated water vapor flux contribute to the improvements in measurable rainfall intensity and heavy precipitation characteristics. The results of this study support the concept that high-resolution global simulations could produce improved hourly precipitation capabilities, especially for heavy rainfall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.