Abstract

Abstract. Precipitation over East Asia in six Met Office Unified Model (MetUM) simulations is compared with observation and ERA-Interim reanalysis. These simulations include three different horizontal resolutions, from low and medium to high, and including atmosphere-only version (Global Atmosphere 6.0; GA6) and air–sea coupling version (Global Coupled 2.0; GC2). Precipitation in simulations is systematically different from that in observations and reanalysis. Increasing horizontal resolution and including air–sea coupling improve simulated precipitation but cannot eliminate bias. Moisture sources of East Asian precipitation are identified using the Water Accounting Model (WAM-2layers) – a moisture tracking model that traces moisture source using collective information of evaporation, atmospheric moisture and circulation. Similar to precipitation, moisture sources in simulations are systematically different from that of ERA-Interim. Major differences in moisture sources include underestimated moisture contribution from tropical Indian Ocean and overestimate contribution from Eurasian continent. By increasing horizontal resolution, precipitation bias over the Tibetan Plateau is improved. From the moisture source point of view, this is achieved by reducing contribution from remote moisture source and enhancing local contribution over its eastern part. Although including air–sea coupling does not necessarily change East Asian precipitation, moisture sources show differences between coupled and atmosphere-only simulations. These differences in moisture sources indicate different types of models biases caused by surface flux or/and atmospheric circulation on different locations. This information can be used to target model biases on specified locations and due to different mechanisms.

Highlights

  • Identifying moisture source for East Asian (EA) precipitation has been a challenging subject that motivates the scientific community and is essential for regional socio-economical development

  • With East Asia being under the influence of the East Asian summer monsoon, early studies tend to consider the adjacent oceans as the major direct moisture source for the EA precipitation and its interannual variability (Zhou and Yu, 2005; Wang and Chen, 2012)

  • To investigate the impact of air–sea coupling on moisture source, we focus on region 1, where ocean is the major contributor

Read more

Summary

Introduction

Identifying moisture source for East Asian (EA) precipitation has been a challenging subject that motivates the scientific community and is essential for regional socio-economical development. Aforementioned studies show progressive understanding on the EA precipitation moisture source and show evidence and challenges for improving the simulated hydrological cycle and regional precipitation in terms of changing the horizontal resolution and introducing air–sea coupling. Based on this knowledge, we will try to understand systematic errors in EA precipitation simulated from a set of GCMs by linking these errors to errors in evaporation and moisture transport using a moisture tracking model.

Data and methods
Met Office Unified Model and experiments
Water Accounting Model-2layers
Precipitation
Moisture source
Change with resolution
Change with coupling
Shift of major moisture source over midlatitude regions
Discussions
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.