Abstract
AbstractCyclic mesocyclogenesis is the process by which a supercell produces multiple mesocyclones with similar life cycles. The frequency of cyclic mesocyclogenesis has been linked to tornado potential, with higher frequencies decreasing the potential for tornadogenesis. Thus, the ability to predict the presence and frequency of cycling in supercells may be beneficial to forecasters for assessing tornado potential. However, idealized simulations of cyclic mesocyclogenesis have found it to be highly sensitive to environmental and computational parameters. Thus, whether convective-allowing models can resolve and predict cycling has yet to be determined. This study tests the capability of a storm-scale, ensemble prediction system to resolve the cycling process and predict its frequency. Forecasts for three cyclic supercells occurring in May 2017 are generated by NSSL’s Warn-on-Forecast System (WoFS) using 3- and 1-km grid spacing. Rare cases of cyclic-like processes were identified at 3 km, but cycling occurred more frequently at 1 km. WoFS predicted variation in cycling frequencies for the storms that were similar to observed variations in frequency. Object-based identification of mesocyclones was used to extract environmental parameters from a storm-relative inflow sector from each mesocyclone. Lower magnitudes of 0–1-km storm-relative helicity and significant tornado parameter are present for the two more frequently cycling supercells, and higher values are present for the case with the fewest cycles. These results provide initial evidence that high-resolution ensemble forecasts can potentially provide useful guidance on the likelihood and cycling frequency of cyclic supercells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.