Abstract

Propagation of short and ultraintense laser pulses in a semi-infinite space of overdense hydrogen plasma is analyzed via fully relativistic, real geometry particle-in-cell (PIC) simulations including radiation friction. The relativistic transparency and hole-boring regimes are found to be sensitive to the transverse plasma field, backward light reflection, and laser pulse filamentation. For laser intensities approaching I ∼ 1024 W/cm2, the direct laser acceleration of protons, along with ion Coulomb explosion, results in their injection into the acceleration phase of the compressed electron wave at the front of the laser pulses. The protons are observed to be accelerated up to 10–20 GeV with densities around a few times the critical density. The effect qualitatively depends on initial density and laser intensity, disappearing with the initial density increase or intensity decrease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.