Abstract
Effects of some sodium salts (NaCl, NaClO3, and NaSCN) in the Hofmeister series on deswelling and temperature-induced aggregation behavior of microgels of poly(N-isopropylacrylamide) (PNIPAAM) and PNIPAAM-co-PAA with attached poly(acrylic acid) moieties were investigated with the aid of turbidimetry and dynamic light scattering. Addition of salt in the concentration range 0.1–0.5 M generated aggregation of the PNIPAAM microgel particles at elevated temperatures, but it was no distinct difference between chaotropic and kosmotropic anions. In contrast, the flocculation behavior at high temperatures for PNIPAAM-co-PAA revealed a prominent influence of salinity and type of anion on the formation of aggregates. The aggregation transition was shifted to the highest temperature for the most chaotropic anion (SCN−), and the aggregation transition at the same salt concentration is consistent with the typical Hofmeister series. The turbidity results from the PNIPAAM-co-PAA microgels disclosed a two-step transition for the considered anions, and both a low and high temperature change in the turbidity data was observed. The high-temperature transition followed the Hofmeister series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.