Abstract

This study tested the specific and combined effects of testosterone treatment and hindlimb suspension (HS) on the properties of steroid receptors in skeletal muscle. Male rats were either administered weekly high doses of testosterone heptylate (10 mg x kg(-1)) or olive oil placebo, and were either tail-suspended or acted as controls. After 3 weeks of treatment, three muscles were excised from each animal, soleus (SOL), extensor digitorum longus (EDL), and plantaris. The results showed that the testosterone treatment was unable to minimise the HS-induced atrophy of skeletal muscle. As expected, HS altered the fibre-type composition of SOL muscles (-33% of type I, +188% and +161% of type IIa and intermediate fibres respectively, P < 0.01). No overall effect of treatment was detected on the fibre-type composition of either slow or fast-twitch muscles. Binding capacity determined by a radiocompetition technique was increased by HS, especially in SOL and EDL muscles (P < 0.01), while HS or steroid treatment decreased the affinity of the steroid receptors. The combination of HS and testosterone administration resulted in a decrease in binding capacity and affinity of steroid receptors in skeletal muscles. Steroid receptors in fast-twitch muscles exhibited a higher affinity than those in slow-twitch muscles, and it is suggested that it is likely that testosterone treatment is more effective in fast-twitch than in slow-twitch muscles. It was concluded that the lack of preventive effect of testosterone treatment on HS-induced SOL muscle atrophy could be explained by both a decrease in steroid sensitivity and the removal of mechanical factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call