Abstract
A theoretical framework, accounting for high-order surface stress, is implemented in a continuum mechanics model based on the Euler-Bernoulli theory of beams and columns to simulate the buckling and resonance behavior of nanowires (NWs). Closed-form expressions for the critical buckling load of uniaxial compression of NWs are derived for different types of end conditions. Size-dependent overall Young’s modulus is characterized versus the diameter of the NWs and is compared with the experimental data. The resonance frequency of NWs is also studied and compared with the simulation results based on nonlinear, finite deformation kinematics. We demonstrate that the present prediction considering both surface moment and surface stress agrees well with the experimental data, while the pure surface stress model may not be able to capture the general trend when the NW’s diameter is less than a certain size. We conclude that the present continuum mechanics approach, considering both high-order surface effects, could be served as one of the feasible tools to analyze the mechanical behavior of nanostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Acta Mechanica
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.