Abstract

To evaluate the effects of high-intensity training and/or a single bout of exercise on in vitro function of the sarcoplasmic reticulum (SR), the rats were subjected to 8 weeks of interval running program (final training: 2.5-min running x 4 sets per day, 50 m/min at 10% incline). Following training, SR function, i.e., Ca2+-ATPase activity and Ca2+-uptake and release rates, was examined in homogenates of the superficial region of the vastus lateralis muscle from rats subjected to a single bout of treadmill running (50 m/min at 10% incline) for 2.5 min or to exhaustion. Training brought about a 12.4% increase (P < 0.05) in SR Ca2+-uptake rate in rested muscles. This change was not accompanied by alterations in Ca2+-ATPase activity, Ca2+-release rate, Ca2+ dependence of enzyme and protein contents of Ca2+-ATPase and ryanodine receptor. A single bout of high-intensity exercise to exhaustion evoked significant reductions (P < 0.05) in SR function, irrespective of whether or not the animals were trained. For 2.5-min run and exhausted rats, no differences existed between SR functions of untrained and trained muscles. These data suggest that high-intensity training may be capable of enhancing SR Ca2+-sequestering ability, and may not protect against decreasing SR function with high-intensity exercise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call