Abstract

The menopausal transition is accompanied by changes in adipose tissue storage, leading to an android body composition associated with increased risk of type 2 diabetes and cardiovascular disease in post-menopausal women. Estrogens probably affect local adipose tissue depots differently. We investigated how menopausal status and exercise training influence adipose tissue mass, adipose tissue insulin sensitivity and adipose tissue proteins associated with lipogenesis/lipolysis and mitochondrial function. Healthy, normal-weight pre- (n = 21) and post-menopausal (n = 20) women participated in high-intensity exercise training three times per week for 12 weeks. Adipose tissue distribution was determined by dual-energy x-ray absorptiometry and magnetic resonance imaging. Adipose tissue glucose uptake was assessed by positron emission tomography/computed tomography (PET/CT) by the glucose analog [18F]fluorodeoxyglucose ([18F]FDG) during continuous insulin infusion (40 mU·m−2·min−1). Protein content associated with insulin signaling, lipogenesis/lipolysis, and mitochondrial function were determined by western blotting in abdominal and femoral white adipose tissue biopsies. The mean age difference between the pre- and the post-menopausal women was 4.5 years. Exercise training reduced subcutaneous (~4%) and visceral (~6%) adipose tissue masses similarly in pre- and post-menopausal women. Insulin-stimulated glucose uptake, assessed by [18F]FDG-uptake during PET/CT, was similar in pre- and post-menopausal women in abdominal, gluteal, and femoral adipose tissue depots, despite skeletal muscle insulin resistance in post- compared to pre-menopausal women in the same cohort. Insulin-stimulated glucose uptake in adipose tissue depots was not changed after 3 months of high-intensity exercise training, but insulin sensitivity was higher in visceral compared to subcutaneous adipose tissue depots (~139%). Post-menopausal women exhibited increased hexokinase and adipose triglyceride lipase content in subcutaneous abdominal adipose tissue. Physical activity in the early post-menopausal years reduces abdominal obesity, but insulin sensitivity of adipose tissue seems unaffected by both menopausal status and physical activity.

Highlights

  • Adipose tissue redistributes during the menopausal transition, leading to an accumulation of abdominal subcutaneous and visceral adipose tissue

  • This study demonstrates that insulin-stimulated glucose uptake in abdominal, gluteal, and femoral adipose tissue depots are similar in pre- and post-menopausal women, despite skeletal muscle insulin resistance in post- compared to pre-menopausal women in the same cohort (Mandrup et al, 2018)

  • Insulinstimulated glucose uptake in adipose tissue depots was not altered markedly by 3 months of high-intensity exercise training in either group, whereas skeletal muscle insulin sensitivity increased after exercise training in both groups (Mandrup et al, 2018)

Read more

Summary

Introduction

Adipose tissue redistributes during the menopausal transition, leading to an accumulation of abdominal subcutaneous and visceral adipose tissue. This might be a consequence of the hormonal shift with loss of estrogens during menopause (Davis et al, 2012), but how adipose tissue metabolism is affected by menopause is sparsely investigated. A similar increase in skeletal muscle glucose uptake in pre- and post-menopausal women was seen after high-intensity exercise training (Mandrup et al, 2018). Whether exercise training affects insulin-stimulated glucose uptake in adipose tissue of pre- and post-menopausal women is not known

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call