Abstract

The reduction in symptoms of Parkinson's disease produced by high-frequency stimulation (HFS) in the internal globus pallidus (GPi) has been proposed to be due to stimulus-induced inactivation of pallidal neurons and resulting disinhibition of thalamic neurons. We tested this in awake Macaca fascicularis by stimulating between pairs of electrodes inserted into GPi under electrophysiological control and recording the responses evoked in thalamic neurons. HFS produced a reduction, not an increase, in discharge frequency during the stimulus train in 77% of the responsive thalamic neurons. Only 16% of the responsive cells showed an increase in discharge during stimulation and, for some of these, stimulation at a similar intensity produced contralateral muscle contraction, a probable sign of current spread to the internal capsule. The few thalamic neurons studied during bursting had a reduction in burst frequency and duration during HFS. We conclude that high-frequency stimulation within GPi does not necessarily facilitate thalamic discharge, and it may act, instead, to interrupt abnormal patterns of thalamic discharge associated with parkinsonian symptoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.