Abstract

Japanese cedar wood specimens were steamed at 80°, 100°, and 120°C over 14 days, and their equilibrium moisture content (M) at 20°C and 60% relative humidity, longitudinal dynamic Young’s modulus (E), bending strength (σ max), and breaking strain (ε max) were compared with those of unheated specimens. Steaming for a longer duration at a higher temperature resulted in a greater reduction in M, σ max, and ε max. The E of wood was slightly enhanced by steaming at 100°C for 1–4 days and 120°C for 1–2 days, and thereafter it decreased. The slight increase in the E of sapwood was attributable to the reduction in hygroscopicity, while sufficient explanation was not given for a greater increase in the heartwood stiffness. Irrespective of the steaming temperature, the correlations between M and the mechanical properties of steamed wood were expressed in terms of simple curves. M values above 8% indicated a slight reduction in E and s max, whereas M values below 8% indicated a marked decrease in the mechanical performances. In addition, the e max decreased almost linearly with a decrease in the value of M. These results suggest that hygroscopicity measurement enables the evaluation of degradation in the mechanical performances of wood caused by steaming at high temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.