Abstract

Introduction: Central fatigue refers to a reduced drive of motor cortical output during exercise, and performance can be enhanced after training. However, the effects of training on central fatigue remain unclear. Changes in cortical output can be addressed non-invasively using transcranial magnetic stimulation (TMS). The aim of the study was to compare responses to TMS during a fatiguing exercise before and after a 3weeks lasting resistance training, in healthy subjects. Methods: The triple stimulation technique (TST) was used to quantify a central conduction index (CCI = amplitude ratio of central conduction response and peripheral nerve response) to the abductor digiti minimi muscle (ADM) in 15 subjects. The training consisted of repetitive isometric maximal voluntary contractions (MVC) of ADM for 2mintwice a day. Before and after this training, TST recordings were obtained every 15s during an 2minexercise of MVC of the ADM, where subjects performed repetitive contractions of the ADM, and repeatedly during a recovery period of 7min. Results: There was a consistent decrease of force to approximately 40% of MVC in all experiments and in all subjects, both before and after training. In all subjects, CCI decreased during exercise. While before training, theCCI decreased to 49% (SD 23.7%) after 2minof exercise, it decreased after training onlyto 79% (SD 26.4%) after exercise (p < 0.01). Discussion: The training regimen increased the proportion of target motor units that could be activated by TMS during a fatiguing exercise. The results point to a reduced intracortical inhibition, which may be a transient physiological response to facilitate the motor task. Possible underlying mechanisms at spinal and supraspinal sites are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call