Abstract

Effects of the duration of chemical etching on the transmittance, absorbance and optical band gap width of the CR-39 (Polyallyl diglycol carbonate) detectors irradiated to high neutron doses (12.7, 22.1, 36.0 and 43.5Sv) were studied. The neutrons were produced by bombardment of a thick Be target with 12MeV protons of different fluences. The unirradiated and neutron-irradiated CR-39 detectors were subjected to a stepwise chemical etching at 1h intervals. After each step, the transmission spectra of the detectors were recorded in the range from 200 to 900nm, and the absorbances and optical band gap widths were determined. The effect of the etching on the light transmittance of unirradiated detectors was insignificant, whereas it was very significant in the case of the irradiated detectors. The dependence of the optical absorbance on the neutron dose is linear at short etching periods, but exponential at longer ones. The optical band gap narrows with increasing etching time. It is more significant for the irradiated dosimeters than for the unirradiated ones. The rate of the narrowing of the optical band gap with increasing neutron dose increases with increasing duration of the etching.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call