Abstract

To evaluate the effects of long-term exposure to high-intensity training among professional runners on cardiac hypertrophy and subclinical atherosclerosis.Prospective study included runners of both sexes (n = 52) and age and gender matched controls (n = 57), without classical cardiovascular risk factors. Ventricular hypertrophy was quantified by echocardiography by linear method and carotid intima-media thickness (cIMT) by 2-D images obtained by ultrasonography. Endothelial function was evaluated by flow-mediated dilation (FMD). Steroid hormones were quantified by HPLC followed by LC-MS/MS. Higher left ventricular (LV) mass index was found in male athletes (p<0.0001 vs. other groups). When adjusted for gender, the degree of left ventricular mass index classified as mildly, moderately or severely abnormal was obtained in 26%, 35%, and 30%, respectively, of female athletes, and in 39%, 14%, and 21%, respectively, of male athletes. Higher ratio of the early (E) to late (A) ventricular filling velocities was found in athletes of both genders. Male athletes presented lower cIMT in the right (p = 0.012 vs. male controls) and left (p<0.0001 vs. male controls) common carotid arteries, without differences in cIMT between female athletes and controls. FMD results were similar among groups. Higher serum testosterone levels were found in male athletes (p<0.0001 vs. other groups) and they were correlated with LV mass (r = 0.50, p<0.0001). The chronic exposure of high-intensity training among professional runners of both genders was associated with increased ventricular mass and adaptive remodeling. Less subclinical atherosclerosis was found in male athletes. Differences in steroid hormones may account in part for these findings.

Highlights

  • It is well known that long-term exposure to high-intensity exercise may promote cardiac remodeling, involving all cavities [1,2]

  • Lower rates of cardiovascular disease have been described in pre-menopausal women, in the general population [11], but female athletes may have hormonal disturbances that can abolish the vascular protection against atherosclerosis [10,12]

  • Male and female athletes did not differ in both distance (124±25 vs. 128±29 km per week, p = 0.88, respectively, unpaired t test) and time spent in training (14±4 vs. 14±7 hours per week, p = 0.53, respectively, unpaired t test)

Read more

Summary

Introduction

It is well known that long-term exposure to high-intensity exercise may promote cardiac remodeling, involving all cavities [1,2]. Endurance athletes commonly exhibit eccentric hypertrophy with balanced increase in chambers and walls, while concentric hypertrophy has been reported mainly for resistance athletes [5,6]. The hypothesis for these differences seems related to differences in the pattern of hemodynamic load between these modalities of exercise [7]. It is controversial whether long-term exposure to intensive training prevents the development of atherosclerosis or promotes healthy vascular remodeling, despite substantial benefits on body mass, body fat and biochemical parameters [8]. Flow-mediated dilation, an endothelial vascular marker capable to predict long-term cardiovascular events [13], seems impaired in athletes, possibly due to differences in artery size and wall thickness [14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call